
JOURNAL OF COMPUTATIONAL PHYSICS 65, 37%385 (1986) 

Blending Method for Grid Generation 

JOHN STEINHOFF 

Department of Engineering Scierlce and Mechanics, The University of Tennessee 
Space Institute, Tullahoma, Tennessee 37388 

Received April 22, 1985 

A systematic procedure is presented for synthesizing a complex computational grid out of a 
number of simpler “elementary” grids. This method is useful when a grid is required for a 
region which, though complex, consists of a number of simpler sub-regions. Frequently, in 
such cases, validated grid generation methods already exist for the sub-regions, such as the 
individual lifting surfaces of an airplane. The procedure presented allows a smooth complex 
grid to be generated which becomes exactly equal to each elementary grid as the surface 
corresponding to that elementary grid is approached. In this way, the existing generation 
methods do not have to be changed and can be used as “black boxes,” whether they are 
algebraic, partial differential equation based, or just given numerically. A number of examples 
are described in detail. c, 19F6 Academic Press. Inc. 

1. INTRODUCTION 

In many cases where a smooth computational grid is required, the boundary of 
the computational domain can be decomposed into a number of pieces, each of 
which is fairly simple. We suppose that an adequate grid can be easily generated for 
each of these pieces, if considered by itself, and describe a method for blending these 
“elementary” grids into one smooth composite grid which has all of the pieces as its 
boundary. Examples where this technique can be used include external flow over an 
entire aircraft, where simple methods exist for generating grids individually over 
each of the lifting surfaces and the pieces of the body. Other examples include inter- 
nal flows where a number of ducts or tubes join, and methods exist for generating 
grids for each element taken separately. An important feature of the concept is that 
it can be used recursively. Composite subgrids can first be formed from elementary 
grids, using the method, then, the same method can be used to form larger com- 
posite grids out of these individual subgrids. If algebraic methods are used to form 
each elementary grid, which can often be done since each piece is simple, then the 
entire grid generation procedure is algebraic, since the blending is non-iterative and 
involves no partial differential equation solutions. Accordingly, where applicable, it 
is a fast method suitable for interactive use. Also, if a partial differential equation is 
to be solved for some physical quantity and an iterative method is used to solve a 
set of discrete equations on the grid, which is usually the case, then at each iteration 
the grid can be quickly regenerated and there is no need to store the entire grid 
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system. This feature can be especially important for large 3-dimensional problems. 
This method is very different from other algebraic methods, such as those of 
Eiseman Cl]. Each elementary grid is taken to be previously determined, enher by 
algebraic methods, partial differential equation solution [I], or any other means. 
These grids can be defined over the entire space, rather than just on surfaces as in 
“transfinite interpolation” schemes. 

An important feature of the method is that it aliows the grid designer to use 
software packages and methods already developed or being developed by others 
(which can be quite sophisticated and complex) for the elementary grids about each 
piece of the problem. These can be used as “black boxes,” and after each elemenrary 
grid is generated the grid designer can blend them together. AIso, after a composite 
complex grid is generated, if one of the pieces is later modified, only the single new 
elementary grid need be recomputed and blended intc the composite grid. 

In this paper two types of problems will be treated. Iu the first, the elementary 
pieces of the boundary are physically separated, and in the second they are con- 
tiguous. The use of the method will be illustrated with several representative 2- 
dimensional examples. There is no conceptual difference between 2- and LLdimen,- 
sional formulations and results of current work on Sdimensional grids wilt be 
presented in a subsequent paper. 

Since the method is local, and each piece only influences the grid in its vicinity, 
locai methods of controlling the grid can be formulated. This could be required: for 
example. if reso!ution were inadequate or if grid lines were to cross. Some of these 
methods will be described. It will be seen that advantages of the method include 
simpiiciry and speed, even for complex geometries isadvantages include the lack 
of guarantees against line crossing (although this can be made uniikely) and the 
requirement that each elementary grid locally have the same topology. 

2. THE BASIC METHOD 

Consider a set of N grids, each spanning the same computational space and 
approximately the same physical space. For simplicity. we define the computational 
coordinates to be just the (integer) indices of the grids, Thus, in 11 dimensions we 
have an n component vector, r,Jl) (z (s,,(l), y,>,(1), z;,(I)) for ra=3) defined on 
each grid (labeled m) as a function of the indices 1 ( = (i. I3 k) for ia = 3 ). It is impor- 
tant to think of the n components of rm as ordinary smooth functions defined in the 
computational (I) space. Defining non-negative -weighting functions P7;(!). the 
physical coordinates of the composite grid are then simply weighted sums of :hose 
of the elementary grids: 

r,(I) = 1 P”(1) r,,(i) 
[ m 

The weighting functions are, in general, functions of ali of the indices 1, and are a 
function of how close the point I is to the elementary surface segments. When ! 
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approaches some surface segment, say m, , then P(I) must approach 1 and all the 
other P’s must approach 0 since there we must have 

r,(l) -+ r,,(l). 

Some of the “art” of using the method resides in the determination of the 
functions P”(I). Since values of r,(l) which define smooth grids are determined 
separately about each elementary surface, the P”(1) do not have to do as much 
work as in an interpolation method where they typically completely determine one 
of the coordinates. In the examples to be presented in the next sections, it will be 
seen that very simple functions are sufficient. The main problems arise when grids 
must be blended with very different values of r in certain regions of 1 near an 
elementary surface. Then, care must be taken that a number of derivatives of P”(I) 
are 0 as I approaches the elementary surface (m,), in addition to the value of P”‘(1) 
approaching 1. As more derivatives are made to go to 0, the region in I space, 
where r,(l) approaches rm, becomes larger. 

3. EXAMPLE ~-CASCADE “C” TRANSFORMATION 

This simple example involves a single weighting function. The two surfaces to be 
fitted by the computational grid are the aifoil surface, where normal velocity is set 
to zero, and the outer surface, where periodic conditions are imposed at the sides 
and far field conditions at the ends. A transonic potential flow solution was to be 
computed on the grid using a multigrid algorithm’ [3]. 

First, a vertical shearing is used to approximately straighten the airfoil. After the 
grid is generated this shearing will be applied in reverse to all the grid points so that 
the initial airfoil is recovered. The shearing function (of X) is a straight line in front 
of the leading edge and behind the trailing edge, matching the slope and position of 
the mean camber line there, and is an interpolating cubic function of x in between. 
This function is simply subtracted from the initial airfoil coordinates and, after the 
mappings are complete, added back to each of the grid points to generate the final 
grid. After the initial shearing, a ‘C” mesh is generated about the airfoil (Fig. 1). 
(The open trailing edge is a continuation of the initially rounded trailing edge and 
is designed to simulate viscous effects.) This mapping involves a square root trans- 
formation about a point inside the leading edge region and a shearing. It is a stan- 
dard mapping for aircraft airfoils and is described in detail in [4]. This is the first 
grid. It has good properties near the airfoil surface but obviously is not suitable in 
the outer region for imposing periodic boundary conditions. 

The second grid consists of a long Cartesian grid with parallel top and bottom 
boundaries, capped with a semicircular piece (see Fig. 2). It has the same C mesh 

‘The development of the computer code for the cascade solution was supported by NASA Lewis 
Research Center Grant NASA NAG 3-398. 
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FIG. 1. Inner grid GOT sheared cascade airfoii. 

topology as the grid in Fig. 1, but is ideally suited for imposing periodic boundary 
conditions on the top and bottom segments and far-field conditions at rhe ends. 
The internal grid lines join the upper and lower boundaries orthogonally, as 
required if the grid is to be smooth when continued periodically (even when the 
shearing function is added back j. The only problem with the grid is that there is no 
airfoil. 

Our objective is to compute a grid that approaches grid 1 along one line (I = : ), 
and grid 2 along the other three (j=j,,,. i = 1 and t = l,,,) (see Fig. 3). Since there 

4j 

FIG. 2. Outer grid for sheared cascade airfoil. 



374 JOHN STEINHOFF 
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olrfoil 

FIG. 3. Computational grid for cascade. 

are only two elementary grids, we have here a simple form for r,.(l) with only a 
single weighting function p(l): 

r,(l) =N) r,(l) + (1 -P(l)) r2(1). 

The constraints on p(l) are: 

1. p(l) + 1 as j+ 1, i not close to 1 or i,,,. 
2. p(l)-+0 asj+j,,,, or i-, 1 or i-ii,,,. 

The main problem here concerns the points near the leading edge of the airfoil 
for j near 1. If p is not very close to 1 for j= 2, 3,... then the (distant) points from 
grid 2 will be significantly included and the final rC values will be very different from 

ti 
i’ 

FIG. 4. Blended cascade grid. 
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FIG. 5. Final cascade grid without shearing. 

those for j = 1 (where p is exactly 1). There will thus be a large grid spacing between 
points with j= 1 and j= 2, as well as between j = 2 and .j= 3. etc. Accordingfy, we 
choose a function with several vanishing derivatives at j= 1: 

p(l) = il -a(j)] b(i) 

a(j) = a2 +[ 1 - cos(7rx;; 

b(i) = $1 - cos(7$)] 

x(j) = (j- 1 );A 

/I(i)=min(d, i- I, i,,,-ij:d 

where A is a length scale, set equal to (j,,, - 1). 

FIG. 6. Coarse cascade grid. 
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FIG. 7. Circulation development for cascade solution. 

The resultant grid is depicted in Fig. 4 and in Fig. 5 with additional stretching in 
the x direction and the shearing function added. A coarser grid with 1 the number 
of cells in each direction is presented in Fig. 6 for clarity. The convergence of our 
finite volume multigrid method for a transonic shock-free case is presented in Fig. 7 
for circulation development and Fig. 8 for average residual decay (one fine grid 
(128 x 16) iteration per multigrid cycle was used with a total of 5 grids). Besides 
cascades, this mapping technique would obviously be useful for wind tunnel boun- 
dary conditions. 

4. EXAMPLE Z-WING-CANARD 

As in the last example, there are “elementary” boundaries which are separated in 
both computational and physical space. Here, we choose an “H” grid elementary 

ITERATION NO 

FIG. 8. Residual decay for cascade solution. 
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FIG. 9. Computational wing/canard grid. 

mapping for both the canard and wing. A detailed study of this mapping was 
presented in [5] for a single airfoil, where it was shown that a particular transfor- 
mation can be used to eliminate the singularity which normally arises at the leading 
edge in this case. A compressible flow problem was solved on this grid and the 
solution was shown to be accurate once this singularity was removed. 

The objective here is to map the wing-canard and outer boundary to a com- 
putational grid depicted in Fig. 9, using an elementary H mesh for the canard 
depicted in Fig. 10 and for the wing in Fig. Il. In this figure, the canard is at zero 
relative angle of attack. For non-zero relative angle of attack, the entire elementary 
canard grid is just rotated in physical space before blending. 

In this case there are four starting grids: an “outer” Cartesian one associated with 
the outer boundaries, a wing and a canard grid, and an inner Cartesian grid. 

The basic plan in this case is to generate a wing/canard inner grid with fairly 
uniform grid size (except near the wing and canard), and then to blend this with ar, 

FIG. 10. Elementary grid for canard airfoil. 
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FIG. 11. Elementary grid for main airfoil. 

“outer” grid with much larger spacing to develop far-field stretching. The elemen- 
tary canard grid is labeled m = 1, and the elementary wing grid, m = 2. These are 
first blended with a fine “inner” Cartesian grid (m = 3) to get intermediate com- 
posite grids (labeled 13, 23). These two are then blended to get an inner 
wing/canard grid, labeled 123. Finally, to provide far field stretching, this grid is 
blended with an elementary Cartesian grid (label 4) which has much larger grid 
spacing. 

First, an “inner” canard (wing) grid is computed by blending the canard (wing) 
and inner Cartesian grid. The first blendings (13, 23) are done with a weighting 
function 

p”(l) = +[ 1 - cos(7carn)] $[ 1 - cos(7rp”1)] 

where HZ = 1 for canard and 2 for wing, and 

cF( i) = 0, i < ir 

P(i)= (i-ir)/(i;“-ir), i;;’ < i -c i;r 

a”‘(i) = 1, i’” < i < i* I-- 12 

a’“(i) = (iy - i)/(i;‘- iy), i’” < i < i” 2 3 

c?(i) = 0, i>iy 

The function p”(j) is defined in the same way, with ir ctjr, k = 0, 1,2, 3. Then, for 
the inner (composite) canard and wing grids (r13(l), rz3(l)), 

r,J =PY) r,(l) + Cl -P’V)I r3(V 
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where r!(I), r?(l), and r,(l) are the canard, wing, and irmer Cartesian grids, respec- 
tively. In the grids ~~~(1) and r2.(1) the canard or wing lies in the region 

iy < i < i’; ; jy <j <j;?, 

In our case J ‘7 =j’;: + 1 and the line .j=j’; forms the lower surface and j=jy the 
upper surface for P; > i > i;“. The two lines coincide in physical space for i < i;! and 
i > i’:‘. Also, the original element canard or wing grid !ies in the region 

The generation of the (13) and (23) grids is just a small algebraic step in the 
overall grid generation procedure: the elementary inner grid (3) is just a Cartesian 
grid and a simple formula is used for the coordinate values. These grids arc not 
separately stored-the coordinate values are used as they are computed in the next 
grid blending step. In the rest of this section it will be assumed that ii < I:; ii < if: 
iI < iz, but ii not necessarily <if (the canard and wing may overlap in i);similar!y 
that j: <j;; j: >jf ; jt <j, * but j: not necessarily >ji. 

The composite inner grid, r,,,(l), is defined to approach s,,(i) as j-j: (j<;Ai; 
and to approach r,,(l) as ,j -jt (j >jg). For j > ‘1. ,J; (upper part of grid) we have 

r,,,(l) =r,Ai) t ;: I 

while for,j<jf (lower part of grid), 

rd) = rdl!. 

We first define the distance functions 

z,(l) = max(O,ji -j) 

z*(l)= max(O,j-ji). 

The function z,(l) is 0 where conditions (1) applies, and ~~(1) is 0 where condition 
(2) applies. We then define a single distance function tz) that is 0, where ( 1) applies 
and 1 where (2) applies: 

Then, we tinaily have 

where 

r,23(1) =piz) r2J) + Cl -p(z)i r,,(l), 

p(z) = I[ 1 - cos(71z)]. 

The grid rIJ3 is shown in Fig. 12. 
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FIG. 12. Blended wing/canard grid (unstretched), 

The purpose of the final blending is to stretch rIz3 in the far field. We want the 
final grid, r,(l), to equal r,,,(l) inside the region 

it <iii;; Jl \J ~Jz- ‘2< ‘< ‘1 

Defining grid 4 to lie in the region il d id i; ; j: <j < j;; 

zl= [(max(O, i-ii, i~-ij)‘+(max(0,j-j~,j:-j))2]1i2 

z2=[(min(i-i~,i~-i))‘+(min(j-j;‘,j~-j))2)]”’, 

z= zl/(zl + z,), 

we have the final grid, 

r,U)=p(z) r,(l) + Cl -PI r12A1L 

where p(z) is defined as above. This is shown in Fig. 13 and the inner part expanded 

yt tj 

FIG. 13. Final wing/canard grid. 
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FIG. 14. Inner portion of final wing/canard grid. 

in Fig. 14. It can be seen that the stretching is more efficient than with the conven- 
tional product form where the grid lines are continued to the outer boundary with 
the same spacing, as shown in Fig. 15. 

II should be noted that there are a large number of ways of assembling rk 
elementary grids into the final grid. We chose here a simple step-by-step method 
which is not necessarily the most efficient bnt perhaps is more instructive. Also, 
even though the intermediate grids were presented separately, they need no: be 
generated separately. Even with the blending used here. all of the blending steps 
could be done together for each grid point (i.j) before computing the next pain:, so 
that only one pass through the grid need be made, and no intermediate grids need 
be generated. Some of these intermediate grids are only shown for clarity. 

Y-B- i-a 

FIG. 15. Wing/canard grid with conventional stretching 
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5. EXAMPLE 3-CoN~rcuous SEGMENTS 

Here, we treat a set of smooth line segments as boundaries, so that the com- 
putational region is bounded by generalized polygons in physical space. If each 
elementary surface is a straight line, we choose each elementary grid to be a Car- 
tesian grid; if it is curved, we choose another, simple grid that is curved. These are 
oriented so that a segment of one of the coordinate lines coincides with the given 
boundary segment. An example of the (block) type of grid that we treat in com- 
putational space is shown in Fig. 16. Each segment of the inner polygon as well as 
the outer boundary rectangle corresponds to a smooth line in physical space. Also, 
either the values of i or the values ofj at the end points of each segment are equal, 
so that the segments are either horizontal or vertical in computational space. 

The spacing of each elementary grid is determined by the spacing parallel to the 
boundary ssgment, and normal to it. The parallel spacing, ds, is just the physical 
length of the segment divided by the number of cells along it. For a straight 
segment; 

As= [(.vz-x,)‘+(1!2-~,)2]‘lZjllZZ-n,l 

where the subscript (1) refers to one end of the segment and (2) to the other, and II 
is either i or j. (This assumes that there is uniform grid spacing along the segment, 
which is not necessary for our method but is taken for simplicity.) The normal 
spacing is input externally for each segment. Also, the i andj values of the segments 
as well as the boundaries are the same in each elementary grid. That is, each 
elementary grid has the same i, j limits but different values of x and y at each point. 

FIG. 16. Computational grid for automobile grid. 
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These values of x and y lie along a different elementary segment (in. physical space) 
for each grid, for the appropriate values of i and j. For a curved segment we can, for 
example, start with a straight segment, generate the grid as above, and add a shear- 
ing (to form the curved segment) to the entire Cartesian sub-grid as well as to the 
boundary segment. Other methods can also be used to generate the subgrids. 

As we approach some segment (k) in I = (i, j) space, the composite grid, rC (r) 
must approach that particular elementary grid, r,(l). Thus, we have 

r,(L j = 
I 

1 P”‘(l) r,,,(l) 

We choose a distance function from point 1 to each segment similar to that in the 
last example: 

2’“2= [(max((), j-i?, jy-j)j’+ (max(O,j-j;;,j, -ej,w))3]1’2; 

where we take 
i”’ < i’” . 1’2, .i:” q. 

Each 2” vanishes on segment nz. We then generalize the formulae of the last secrion 
to N segments instead of two. We define a “‘global” distance function for each 
segment that is I when 1 approaches the segment (P + 0) and 0 when 1 approaches 
any other segment (I’“‘-+ 0, nfZ # ml): 

Th’en, we simply have 

The composite grid resulting from applying these formulae to a particular set of 
segments is shown in Fig. 17, and an expanded view of the inner several grid hn.es 

X- id 

FIG. 17. Automobile grid 
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FIG. 18. Inner portion of automobile grid. 

in Fig. 18. In this example all segments are straight except one, which is a circular 
arc. Although the spacing along each segment is constant (equal to the segment 
length in physical space divided by the length in computational space) the normal 
spacing is not: The cell height at the segment and on the grid line containing the 
segment is half that of the cells away from the segment, for added accuracy at the 
boundary. The code which generated these grids is less than 200 lines long, even 
though it can treat a number of separate polygons (the outer boundary is treated as 
just another polygon). 

For generalization of this mapping, other boundary conforming elementary grids 
can be used instead of the simple ones shown here. Also, grid bunching near and 
normal to the segments can easily be implemented. In this case, a non-uniform 
spacing along each segment should be used that approximately matches the 
variable grid cell height normal to neighbouring segments. 

6. CONCLUSION 

A method of grid generation has been described that can be used to blend a num- 
ber of elementary grids together into a smooth composite grid. If these elementary 
grids have desirable properties near a set of grid boundaries, such as orthogonality, 
then the composite grid can also be made to have them. This can be especially 
useful when designing a grid for a complex object such as an airplane, where 
methods already exist for generating good grids about each of the components. The 
method is computationally fast and, depending on the elementary grids, can be 
coded to recompute algebraically the entire grid for each iteration of some other 
solution scheme, which requires the grid. In these cases the full grid need not be 
stored in the computer, which can be an advantage in large 3-dimensional com- 
putations. 

An additional feature is the recursive property, that allows more complex grids to 
be generated from simpler ones. This also allows “patches” to be blended into 
regions where the original composite grid has undesirable properties, such as 
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excessive skewness or “folding over.” Also, as described, simple unified methods of 
treating contiguous surface exist, as well as simple methods of refining the grid near 
these surfaces. 

Although we have described some examples, the true usefulness of this meth.od 
will only become apparent after it has been utilized in a large number of more com- 
plex cases and modifications are found to cure the many problems that are hkeiy to 
arise. 

ACKNOWLEDGMENTS 

The author would like to thank Mr. K. Ramachandran for generating the computer plots prescnred 
and Professor K. C. Reddy for making helpful comments concerning the manuscript. 

REFERENCES 

1. P. R. EISENMAN, “Grid Generation for Fluid Mechanics Computations.” Annual Reviews 9f ?!::id 
Mechanics, Vol. 17 (Annual Reviews, Palo Alto, 1985), p. 487. 

2. J. F. THOMPSON, “Elliptic Grid Generation,” Numerical Grid Generation, edited by J. F. Thompson 
(North-Holland, New York, 1982). p. 79. 

3. A. JAMESON, AND D. A. CAUGHEY, in Proceedings of the Third AMA Conference on Computatlonai 
Fluid Dynamics, Albuquerque, NM, 1917, p. 35; A. JAMESON, in Proceedings of Fourth AKAA Cm- 
ference on Computational Fluid Dynamics, Williamsburg, VA, 1979, p. 121. 

1. .4. JAMESON, Commun. Pure Appi. Math. 21, 283 (1974). 
5. It. B. FELZ, AND J. S. STEINHOFF, in Proceedings of the ASME Winter Meeting on Compu:ers in Fllo:~~ 

Predictions and Fluid Dynamics Experiments, Washington, D. C.. 198 I, p. 21. 


